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Abstract. We consider an integrable model consisting of two one-dimensional parabolic bands 
of opposite mass (m = -k$, respectively) s e p t e d  by a gap. 2A. The bands contain spinless 
fermions, one band corresponds to the conduction band and the other one to the valence band of 
a semiconductor or semimetal The holes in the valence band and the spinless eleclmns in the 
conduction band are locally amacted via a 8-function potential. This model can be mapped onto 
the two-component Fermi gas with &-fundion interaction. so that the two components label the 
bands: lhe chemical potential corresponds to a magnetic field. and A to the chemical potential. 
We use Gaudin and Yang’s exact solution of the many-body problem 10 study Ihe formation of 
exciton bands. The properties of the ground and metastnble states. the excitation spectrum and 
the thermodynamics of the model a~ obtained. In the ground or metastable states the particles 
(electrons in the conduction band and holes in the valence band) are either paired in exciton 
bound states or unpaired. Their spectrum of elemental excitations is approxL”ae1y parabolic. 
At finite T many-particle bound states (suing solutions of the Bethe mou equations) can be 
populated; at low T these States a!-? strongly delocalized and can be interpreted as electron-hole 
droplets. The low-T properties ofthe model are discussed. 

1. Introductiou 

Excitons are bound electron-hole pairs in a semiconductor that form via the Coulomb 
attraction of a free electron and a free hole created whenever a photon of energy larger than 
the energy gap is absorbed [I] .  They can move through the crystal transporting energy, but 
no charge, since they are electrically neutral. We consider here weakly bound excitons (of 
the Mott-Wannier type) which have an average electron-hole distance large in comparison 
with the lattice constant. The binding energies are typically of the order of 10 meV and 
the exciton may decay with annihilation of the electron-hole pair with a lifetime of about 
10 ps. At intermediate temperatures the exciton gas undergoes an insulator-metal transition 
as a function of the concentration of carriers; the exciton gas is insulating at low densities, 
but at high concentrations the exciton gas breaks up into a conducting plasma of unpaired 
electrons and holes. The critical concentration for the Mott transition from excitons to the 
plasma is of the order of 10” 

At low temperatures and if the exciton concentration is sufficiently high (larger than 
IOt3  the excitons may condense into a drop. Within this state, originally predicted 
by Keldysh [2], the excitons dissolve into a degenerate Fermi gas of electrons and holes 
with metallic properties [3]. The electron-hole droplet is energetically favourable by about 
1 meV per exciton with respect to free excitons, and has a lifetime of the order of 100 ps. 

The formation of exciton bands in a semiconductor, the condensation into electron-hole 
droplets and the Mott transition to a plasma are part of a complicated many-body problem. It 
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may be instructive to consider a simplified model in one dimension which contains some of 
the key aspects of the physical situation and can be solved exactly. The exact solution may 
provide insights and serve as a testing ground for approaches intended for more complex 
problems. The model, however, is quite unrealistic in the sense that it does not apply to an 
experimental situation. 

We consider a simple one-dimensional model consisting of two parabolic bands of 
spinless fermions, one valence band of effective mass m = -i and one conduction band 
of mass m = 1, separated by a gap 2A. The holes in the valence band and the electrons 
in the conduction band are locally attracted by an effective &function potential V .  The 
Hamiltonian is the following: 

- ~ V / & I ! & Z  WI -xz)a ' (x~)a(x~)[ l  -b t (xdb(xd]  (1.1) 

where the a-operators refer to the conduction band and the b-operators to electrons in the 
valence band, and p is the chemical potential. The energy of the valence band is not bound 
from below, so that a momentum cut-off pc  has to be introduced. 

We fist briefly discuss the bands in the absence of interaction. Denoting ep = p z  we 
have that in the ground state the conduction band states with e p  .e p - A are occupied, 
and in the valence band states with ep  < -p - A are empty. Hence, if p = 0 we have 
the same number of electrons in the conduction band as holes in the valence band, which 
is zero if A > 0 (semiconductor) and non-zero if A c 0 (metal). Here A = 0 corresponds 
to the semimetallic situation. 1.1 > 0 refers to more electrons (in the a-band) than holes (in 
the b-band) and p -= 0 to more holes than electrons. 

An attractive interaction (V > 0) introduces bound states between electrons (conduction 
band) and holes (valence band), the excitons, with a binding energy of the order of V2.  
Consider the situation of equal numbers of donors and acceptors (p = 0). If A exceeds 
the binding energy the conduction band is empty at T = 0 and the valence band is full 
(no holes). The excitons are then excited states of the system; they are stable since there 
is no mechanism for annihilation by recombination. If A is decreased there is a threshold 
value Ac > 0 below which the exciton band is being populated in the ground state. This 
corresponds to an electrical insulator but a good thermal conductor. The transition to a 
plasma of electrons and holes cannot take place because of the dimensionality of the model 
and the fact that particles within the same band do not repel each other. The Mott criterion 
for a metal-insulator transition cannot then be applied. If p # 0, on the other hand, not all 
the electrons or holes are paired and they occupy a second band (of unpaired particles). 

The model has many-particle excited states, so-called string excitations, which for 
electron-hole symmetry, i.e. very small @, have a very low energy. These states are bound 
states with a weak dispersion that can accomodate a large number electrons and holes, and 
resemble to some extent the electron-hole droplets in semiconductors. The system can be 
prepared into one of these metastable states at low temperatures; at higher temperatures 
many states have a finite population so that this interpretation is no longer meaningful. 

Model (1.1) can be mapped onto the two-component Fermi gas with attractive &function 
potential by the following transformation: 

b y x )  + cq(x) b(x)  + c$) a ' (x )  -+ ci,(x) a(x)  + C ( ( X ) .  (1.2) 
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This transformation interchanges electrons and holes in the valence band, and the two bands 
are labelled by the spin index. Except for an additive constant, the Hamiltonian (1.1) is now 
equivalent to the fermion many-body problem solved by Gaudin 141 and Yang 151 within 
the framework of Bethe's ansa&, i.e., 

- V z / d x i  /dTz S h  - x d  = ~ ( ~ I ) c ~ ~ ( x z ) c , ~ ( ~ z ) c , ( ~ ~ ) .  

Note that A plays the role of the chemical potential in the transformed Hamiltonian (1.3) 
and p represents the magnetic field. In other words, their meaning has been reversed with 
respect to (1.1). Below we restrict ourselves to the situation where the number of holes in 
the valence band is larger than or equal to the number of electrons in the conduction band 
(p c 0). The p > 0 case can be straightforwardly obtained by reversing the directions of 
the 'spins' in (1.3). 

The ground state of the semiconductor actually corresponds to just empty bands (no 
electrons in the conduction band, no holes in the valence band), but the model has a much 
richer structure of phases, which are discussed in section 4. These other phases can be 
interpreted as excited states of the semiconductor. Note that the model is integrable so all 
states are eigenstates of the Hamiltonian, and there is no relaxation mechanism like the 
electron-hole recombination. Once prepared in one state the system remains in that state 
without change. 

The rest of the paper is organized as follows. In section 2 we restate the discrete 
Bethe ansae equations for model (1.3) derived by Gaudin [4] and Yang [5]. In section 3 
we summarize the classification of states according to the string hypothesis and state the 
thermodynamic Bethe ansutz equations [6,7]. The ground-state properties, i.e. the exciton 
band and the band of unpaired particles, are studied in section 4 as a function of fi, A 
and V. The spectrum of elemental excitations is discussed in section 5 for three different 
situations. The excitations are soliton like, i.e. their energy and momentum are additive. In 
section 6 we analyse the string excitations at finite T and point out similarities with and 
differences from electron-hole droplet states. Concluding remarks follow in section 7. 

(1.3) 
C7.s' 

2. Bethe ansa& equations 

In this section we briefly restate the main results of the diagonalization [4,5] of Hamiltonian 
(1.3). The necessary and sufficient condition for the integrability of the model is the 
factorization of the N-particle scattering matrix into a product of two-particle scattering 
matrices. This condition is fulfilled if the two-particle scattering matrix satisfies the 
triangular Yang-Baxter relation [5 ,8 ] .  

The wavefunction for N particles can be written as a linear combination of plane 
waves with N different wavenumbers k .  Since there are N! possible permutations of these 
wavenumbers, there are N! terms in the unsatz for the wavefunction. Imposing periodic 
boundary conditions gives rise to a new eigenvalue problem of N operators (each one 
consisting of a product of N - 1 two-particle scattering matrices), which are all to be 
diagonalized simultaneously. Let us assume the system (1.3) has N - M electrons with 
spin up and M with spin down (M < N/2). The new eigenvalue problem can then be 
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viewed as an one-dimensional lattice gas of N sites with M particles and N - M holes, 
or equivalently as a Heisenberg chain, and can be solved by a second generalized Bethe 
ansatz. This second nested Bethe unsatz, which was introduced by Gaudin [4] and Yang 
[SI, is formulated in terms of a new set of M rapidities A. All rapidities have to be different 
to ensure the linear independence of the wavefunction. The nested Bethe unsatz yield the 
following sets of coupled equations for the rapidities [kj} and {he ] :  

where L is the length of the box. The rapidities (solutions of the above equations) may 
take real and complex values. Each solution corresponds to a possible state of the system. 
Assuming f i  i 0, the number of holes in the valence band is N - M and there are M 
electrons in the conduction band. The kinetic energy and the momentum are given by 

E = c k :  P = c k j .  
j =  I j-1 

Note that the Bethe ansafz eigenfunctions are only a basis of states within the subspace 
of fixed N and M < N j 2 ,  and not a complete set of eigenstates of the Hamiltonian (1.1) 
or (1.3) [9]. It requires a mapping transformation to construct the eigenstates outside this 
subspace. As discussed in section 1, this mapping reverses the spins of the particles in 
model (1.3) or equivalently interchanges electrons and holes in the semiconductor model 
(1.1). 

3. Classification of states and thermodynamics 

Each eigenstate of the Hamiltonian is specified by two sets of rapidities, (k,} and {ha) ,  
which have to satisfy equations (2.1). In the thermodynamic limit the solutions to (2.1) can 
be classified as follows [6,7, IO]: 

(i) N - 2 f i  real charge rapidities k representing unpaired propagating holes in the 
valence band (1 < 0); 

(ii) 2 pairs of complex conjugated charge rapidities, k = A r t  iVj2, corresponding to 
exciton bound states (a boundstate between an electron and a hole); 

(iii) MA swings of length (n - l), associated with excited electron-hole states (bound 
states involving n particles (under special conditions related to electron-hole droplets)), of 
the form h = A; + iV(n + 1 - 2 p ) / 2 .  p = 1, ..., n ,  n = 1, ..., 00. 

Here, the A in (ii) and the h; in (iii) are real parameters representing the motion of the 
centre of mass of the corresponding boundstate. From their definition the integers M. fi, 
and MA satisfy the relation M - &f = Cg, n MA. 

Following [6] and [7] the above string solutions are inserted into the discrete Bethe 
ansarz equations and the equations are then made logarithmic (since they represent relations 
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among scattering phase shifts). The logarithmic equations are defined up to a multiple of 
2n, giving rise to sets of integers (or half-integers), one for each class of excitations, which 
are the quantum numbers of the many-body problem. Since all rapidities within a set have 
to be different, all quantum numbers within a set also have to be different. A quantum 
number may be represented (particle) or missing (hole) in a set; this determines the Fermi 
statistics obeyed by all rapidities. In this way in one dimension exciton states, although 
boson like, are occupied according to the Fermi distribution. In the thermodynamic limit the 
distribution of rapidities is dense and it is useful to introduce density functions for particles 
and holes of each class of states. We denote by p(k) and &(k) the densities for the states 
in class (i), with U’@) and U:@) the densities for class (U), and with U,,@) and unk(A) the 
densities of class (iii), n = 1,  ...,CO. Differentiating the logarithmic equations with respect 
to the rapidities we obtain a set of linear integral equations for the density distributions; 
Fourier transforming we have [6,7,10] 

where the hat denotes the Fourier transform, and 

These relations are valid under general conditions and do not imply thermal equilibrium. 

bands are given by 
The kinetic energy and the occupations of the valence (number of holes) and conduction 

E f L  = dk k2 p(k) + 2 dh (A2 - V2/4) U’(.\.) 

(3.3) 
s s 

N h / L  = /” dk p(k)  + ] dA u‘(A) N J L  = dA u‘(A) s 
Although excitons and electron-hole droplets do not exist in semiconductors under 

thermal equilibrium, it is useful to study the equilibrium thermodynamic energy potentials 
associated with these states. These energy potentials yield, in the limit T -+ 0, the excitation 
energies of the system. The energy potentials for each class of states are defined as 

(3.4) 

In order to impose thermal equilibrium the free energy functional is minimized with respect 
to all density functions [6.7] subject to the constraints (3.1) and the conservation of the 
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number of particles in the valence and conduction bands. For the latter we introduce two 
Lagrange multipliers, the chemical potential and the band-splitting A. 

The minimization of the free energy yields the following integral equations for the 
energy potentials [6,7,10]: 

c ( k ) = ( k * + A + p ) + T S ( U a ~ ( t - b )  In(l+exp(-@(A)/T)) 

(3%) 

f (b )=2(b2-  V 2 / 4 + A ) + T J d l ' a a ( l - ~ ' )  In(l +exp(-@(A')/T)) 

+ T  dkal (b-k)  In(l+exp(-c(k)/T)) (3.5b) 

m 
s 
s 

T In(l+q.(A)) = - 2 n p + T x / d A '  Anm(A-A')  In(l+qm(A')-') 
m=l 

+ T dG an(b - k )  h ( l +  exp(-s(k)/T)) (3.54 

where a,@) = (nV/2n)/(A2 + (nV/2)'). The free energy is given by 

The solution of the above integral equations yields the thermodynamic properties as a 
function of V, T, p and A. If p is large and negative, then fi becomes large and positive 
for all n, so that the occupation of string states is not favourable. In this situation most 
of the holes in the valence band are unpaired and only some of them are bound in exciton 
states. 

The integral equations satisfied by the density functions in thermal equilibrium can be 
obtained from (3.5) by differentiating with respect to A, i.e., 

1 a6 
~ ( k )  = - 2n (1 + exp(c/T))-l- aA 

(3.7) 

The hole density functions are obtained via the definition of the potentials (3.4). It is also 
easily verified that aF/aA = N = N. + Nh by differentiating (3.6) with respect to A. 

The thermodynamic equations derived in this section are closely related to those of the 
spin-f Anderson impurity [ l l ]  and also to those of the supersymmetric t-J model [12]. 
The main difference are the driving terms (including the expression for the energy), but 
otherwise the structure of the Bethe ansatz solutions is very similar for all three models. 

Usually all energies describing a semiconductor are large compared to the temperature. 
Hence we will first discuss the ground-state equations. 
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4. Ground-state properties of the model 

The ground state of the semiconductor is just the absence of particles, i.e. no electrons in 
the conduction band and no holes in the valence band. The model (1.1) is, however, richer 
than just this situation. Here we first derive the ground-state integral equations obeyed by 
the energy potentials and the density functions, and then we calculate some ground-state 
properties for three relevant limits. These limits can be interpreted as metastable states of 
a semiconductor. 

As a consequence of the Fermi statistics obeyed by the rapidities, states for which 
the energy potential is positive are empty in the ground state, while those for which the 
potential is negative are occupied. The Fermi surface is given by the zeroes of the potentials. 
Since p is zero or negative, the 9,, potentials are always positive, so the string states are 
not populated in the ground state. The potentials c (k )  (band of unpaired holes) and @(A) 
(exciton bound-state band) are symmetric functions and increase monotonically with Ikl and 
IAl, respectively. Depending on the values of p and A the potentials of the exciton band 
and the band of unpaired holes may have zeroes, i.e., a Fermi surface. These zeroes define 
the parameters B and Q via 

E ( i B )  = 0 = 0. (4.1) 

Although initially derived in section 3 for thermal equilibrium, thii Fermi surface can be 
interpreted as that of an excited state of the semiconductor. Since all states are eigenstates 
of the Hamiltonian, the system remains in the state it is prepared in, e.g. out of equilibrium 
if electrons from the valence band have been optically pumped into the conduction band. 

In the limit T + 0 equations (3.5) yield [ 131 

W) E(k) = (k' + A + p) - / Q 1  CU - V I 2  
-Q n ( k -  A)'+(V/2)* 

V 
*(A') 

e 1  
@(A) = 2 ( k  + A - (VIZ)') - 1 dh' - 

-Q IT (h-h')'+ v2 

' I 2  6(k) 
1 

- l: dk (k  - A)' + (VIZ)' 

(4.2) 

(4.2b) 

(4.2~) 

Using (3.7) it is straightforward to show that the corresponding density functions satisfy 
[4,141 

U'@') 
1 1 V CU' - 
z ll U;@) +a'@) = - - 

x ( A -  A')'+ V' 

(4.3a) 

(4.3b) 

(4.3c) 
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and that the ground-state kinetic energy, the number of electrons in the conduction band 
and the number of holes in the valence band are given by 

Note that the kinetic energy density does not contain the terms proportional to A and p in 
the original Hamiltonian. These energy terms as well as the energy of the optical transition 
that creates the electron-hole pairs have to be added to the kinetic energy. 

It is instructive to analyse the equations for the potentials in the V -+ 0 limit. Two 
situations have to be distinguished: (i) the conduction band is empty and (ii) both bands 
are partially occupied. In case (i) we have Q = 0 and hence 

t (k)  = k Z +  A + p  BZ = - A  - p  

(4.52) 

Here B is the Fermi momentum of the valence band. The conduction band is empty as 
long as A > p; if this relation is not satisfied we have case (ii) for which we have two 
Fermi momenta, B and Q. A physical solution only exists if Q < B. It is straightforward 
to show that 

(4.5b) 

The Fermi momenta of the two bands are given by Qz = p - A and BZ = -p - A in 
agreement with our discussion in section 1. 

If V is non-zero, the situation remains similar. except that the A, required to have an 
empty conduction band is larger than p. The critical value of A separating the cases (i) 
and (ii) is 

(4.6) 
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Here Ac refers to the equilibrium situation and does not include the energy of the optical 
transition creating the electron-hole pair. Similarly, if the particles are all in the exciton 
band it requires a chemical potential lower than a critical one, p.. to place the first hole 
into the unpaired particle band, 

(4.7) 

Below we discuss three situations: (1) the empty exciton band case, (2) both the exciton 
and the unpaired hole bands partially occupied and (3) the empty unpaired hole band. 

(1) The situation of an empty exciton band corresponds to Q = 0. The number of 
unpaired holes in the valence band is then determined by the parameter B, which is related 
to A and p via B2 + A + fi  = 0. Only the t potential is negative in the range Ikl < B .  
The integral equations (4.2) and (4.3) reduce to simple integrals and it is straightforward to 
obtain the potentials and densities. The occupied ‘hole’ states behave like free fermions. 
The kinetic energy density, the chemical potential and the critical band-splitting (as given 
by (4.6)) are shown in figure 1 as a function of the hole density in the valence band for 
V = 0.5 (note that Q = 0). For this case p is always smaller than Ac; in the Nh + 0 limit 
we obtain Ac = -fi = V2/4. As expected the kinetic energy increases monotonically with 
the hole density. This situation corresponds to the ground state of a pdoped semiconductor 
(note that due to the translational invariance of the model there are no bound acceptor 
levels). 

5 -0.25 

W 
-0.75 

-1 .oo 
0.0 0.1 0.2 0.3 0.4 

Figure 1. The kinetic energy density, chemical potential and critical band-splitting (as given 
by (4.6)) as a function of the hole density in the valence band, NhIL, for V = 0.5 (note that 
Q = 0, i.e. the exciton band is empty). As Nh + 0 we have Ac = - p  = V 2 / 4 .  The energy of 
the optical transition creating an electron-hole pair is not included here 

(2) The situation where both bands are p d a l l y  filled leads to two coupled integral 
equations for 6 and (or p and 0‘). These coupled integral equations have to be solved 
numerically. The results are expected to be qualitatively similar for all B # 0 and Q # 0. 
Their numerical solution is simplest if B = Q. The number of electrons in the conduction 
band and the number of holes in the valence baud as a function of the total number of 
particles for V = 0.5 and B = Q are shown in figure 2(a). Their difference remains 
approximately constant for large N e t  Nh, meaning that the occupation of the unpaired 
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hole band saturates. The kinetic energy density, the chemical potential and the band 
splitting A are displayed in figure 2(b). The energy can be negative because of the binding 
energy of the excitons. p only depends weakly on Ne + Nh, which is consistent with the 
population of the unpaired band being approximately constant, while A varies strongly (i.e., 
the exciton band is being filled). This situation corresponds to a p-doped semiconductor 
(due to the translational invariance of the model there are no bound acceptor levels) away 
from equilibrium. The energy of the optical transition creating the electron-hole pairs is 
not included in the expression of the energy. 

Fwre 2. (a) The number of electrons in the conduction band, N. fL. and the number of holes 
in the valence band, Nh/L, versus the total number of particles for Q = B and V = 0.5. For 
a large number of particles the difference behveen holes and elecvons remains approximately 
conswnf that is the number of unpaired holes sms. @) The kinetic energy density. band 
spliuing A. and the chemical potential as a function of the total number of particles for Q = B 
and V = 0.5. Tlw weak dependence of on Ne + Nb is consistent with the sahuatioon of the 
number of unpaired holes. The energy of the optical transitioo creating an electron-hole pair is 
not included here. 

(3) Here we consider the situation where the unpaired hole band is empty ( B  = 0), i.e., 
we have as many electrons in the conduction band as holes in the valence band (undoped 
semiconductor), all forming exciton bound states (in general Q # 0). The problem reduces 
to the solution of a single integral equation of the Fredholm type for * ( A ) .  The number 
of particles bound in excitons N I L  = ( N .  + Nb) /L  is determined by the integration limit 
Q or equivalently by A. It requires a chemical potential lower than f iC (given by (4.7)) to 
populate the unpaired hole band. Hence, pLc is the chemical potential necessary to place the 
first unpaired hole. If there are exactly as many holes (in the valence band) as electrons (in 
the conduction band) we have f i  = 0. The kinetic energy density (which can be negative 
due to the exciton binding energy), the band splitting A and fic are displayed in figure 3 as 
a function of N I L  for V = 0.5. Since the unpaired hole band is empty, fiC only depends 
weakly on the number of excitons in the system. This case can represent a situation away 
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from equilibrium in an undoped semiconductor. The energy of the optical transition creating 
the electron-hole pairs is not included in the expression of the energy. 

-0.3 U 
-0.4- 

0.0 0.1 0.2 0.3 0.4 0.5 

Figure 3. The kinetic energy density E I L .  band splitting A and critical chemical potential 
!.cc (as given by (4.7)) as a function of the number of particles. (Nh + N,)/L, for B = 0 and 
V = 0.5. AU particles are bound in  exciton stales. f i  is the chemical pateotial required to 
place the firs1 unpaired hole into Ihe r(k) band. "he kinetic energy can be negativa because of 
the meiton binding energy. The energy of the optical hansition creating an electron-hole pair 
is not included here. 

If Q + 5 # 0, i.e. when at least one band has a Fermi surface, the low-temperature 
corrections to the energy potentials and to the h e  energy are of the order of T2. Hence, 
for a system in thermal equilibrium, but not for an optically pumped semiconductor, this 
gives rise to a specific heat proportional to T, except when the Fermi level is at the van 
Hove singularity of an empty band. In this case the leading contribution is proportional to 

in complete analogy with a Prokovsky-Talapov level crossing [15]. If both bands are 
empty (undoped semiconductor in thermal equilibrium) the excitation spectra all have gaps 
(see next section) and the specific heat is exponentially activated. In case (3) when IpI is 
very small the (on bands may significantly contribute to the specific heat even at low T. 

The van Hove singularities also affect the band occupations (the density of states 
diverges with a square root singularity at a one-dimensional van Hove singularity). This 
effect is similar to the dependence of the magnetization on the field at the critical point as 
discussed in [16,17] for model (1.3). Note that the exciton bound states are the analogue of 
the Cooper pairs in the metallic situation [16,17] (model (1.3)) and the chemical potential 
corresponds to the magnetic field. It is also worth pointing out that excitons exist at all 
temperatures. i.e. also above the critical temperature Tc = 0. There is, however, no long- 
range order in the correlations among the excitons. This property is a consequence of the 
one-dimensionality of the model. 

5. Spectrum of elemental excitations 

Here we consider elemental excitations from the ground state or the metastable states 
discussed in the previous section. The spectrum of elemental excitations is obtained by 
adding or removing a rapidity from one of the sets (i), (ii) or (iii) defined in section 3. 
Adding or removing a rapidity yields an additional driving term for the corresponding 
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density function. Since the integral equations obeyed by the density functions are linear, 
the energy and momentum of excitations are additive, i.e. they are soliton like. The method 
has been extensively described in [13.18,191. 

In view of the Fermi statistics obeyed by the rapidities and the definitions of the energy 
potentials, the excitation energies of the system are just given by the energy potentials at 
T = 0. The three classes of states defined in section 3 refer to excitations due to adding or 
removing an exciton of rapidity Ao, 

to adding or removing an unpaired hole in the valence band of rapidity ko. 

(5.lb) 

and to placing a rapidity into one of the string-bands with rapidity 4, 

From their definition all excitation energies are of course non-negative. If the potential 
is negative for the rapidity under consideration, the excitation corresponds to removing a 
particle (defined by the respective class of states), while if the potential is positive a particle 
is added. If ko = kB the unpaired hole excitation energy vanishes. Similarly, if A0 = &Q 
the excitation energy for excitons vanishes. These points correspond to the Fermi surface 
of the system in the ground or metastable states discussed in the previous section. 

Although frequently incorrectly refered to as momenta, the rapidities only parametrize 
the momentum of the excitation, which is actually given by the quantum number of the 
rapidity added or removed. From its definition the momentum is then 

respectively. The momenta are odd functions of their argument and increase monotonically 
(approximately linearly with the rapidity). The Fermi momentum of the exciton band is 
given by p m ( Q )  = n N J L  and the one of the band of unpaired holes is pUnp(B) = 
x ( N h  - N,) /L .  As mentioned above, the excitation energies vanish at the respective 
Fermi level. The slope of A E ( p )  at the Fermi surface defines the Fermi velocity of 
the corresponding band. The range of the momenta for the string excitations is given by 
p$)(oo) = Z ( N ~  - N , ) / L .  This is the largest momentum string excitations can acquire 
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Figure 4. Excitation energies as a function of momentum for V = 0.5, B = I and Q = 0. This 
corresponds to E I L  = 0.1061, NhIL = 0.3183, N J L  = 0. Ac = -0.3063 and p = -0.6937. 
Only the e(&) band is filled for Ikl < B and has a Fermi surface with Fermi mOmenNm 
p~ = r N h / L .  The dispersion of the exciton and unpaired hole bands is approximately parablic. 
The momenm of the suing excitations cannot exceed p ~ .  The energy of the optical transition 
creating an elecuon-hole pair is not included here. 

Fgore 5. Excitation energies as a function of momentum for V = 0.5 and Q = B = 0.5. 
This corresponds to E I L  = 0.01382, A = -0.2502, p = -0.09835, NbIL = 0.2390 and 
N , / L  = 0.2074. Both the exciton band and the unpaired hole band are filled for rapidilies smaller 
than B = Q and have a Fermi surface given by p F  = nN. /L  and p;’ = n(Nh - N e ) / L ,  
respectively. The range of the string excitations is limited to a maximum momenNm Sp. m e  
energy of the optical transition creating an electmu-hole pair is not included here. 

when reached from the ground or metastable state. We discuss the string excitations at finite 
T in more detail in section 6. 

In figures 4-6 we have plotted the excitation energies from the ground or metastable 
state as a function of the respective momentum for the three cases considered in section 4. 
We now discuss each situation separately. 

(1) The excitation energies from the ground state of a (p-doped) semiconductor for 
Q = 0, B = 1 and V = 0.5 are shown in figure 4. This corresponds to N J L  = 0, 
Nh/L = 0.3183, E / L  = 0.1061, Ac = -0.3063 and p = -0.6937. ?he exciton and 
unpaired hole bands are approximately parabolic; all hand energies are non-negative except 
the ~ ( k )  band, which is negative for Ikl < B (hole states). The chosen splitting is Ac and 
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Figure 6. Excitation energies as a function of momentum for V = 0.5, 5 = 0 and Q = 1. This 
mmponds  to N J L  = N h / L  = 0.3948. EJL = 0.2309, A = -1.123 and = -0.000787. 
Only the exciton band has a Fermi surface with Fermi momentum p~ = R N J L .  The string 
states are not occupied but are excitations with a very low energy (only p = 0 strings can be 
reached from the ground stae). The unpaired hole band Iws a very small gap and is parabolic for 
very small p, The energy of the optical transition mating an electron-hole pair is not included 
here. 

the energy required for the optical transition to create a free electron-hole pair has to be 
added in. The energy of the string excitation bands increases monotonically with n, and 
their dispersion becomes less pronounced with increasing n. i.e. they become momentum 
independent for sufficiently large n and the range of their momentum is IpI < pyp, 

(2) If both bands, E(k) and $(A), are partially filled (p-doped semiconductor in 
metastable state), the Fermi surface consists of four points, namely, k = +E and 
A = kQ. In figure 5 we present the excitation spectrum from the metastable state for 
the situation E = Q = 0.5 and V = 0.5, which yields N , / L  = 0.2074, Nh/L = 0.2390, 
E / L  = 0.013 82, A = -0.2502 and p = -0.09835, Here both AE.,(p) and AE,,(p) 
are approximately parabolic, both displaying particle and hole states. The p,, potentials 
have a weak dispersion and their energy increases monotonically with n. The momentum 
range of the string excitations is correlated with the Fermi surface of electrons and holes. 
Note that the energy corresponding to the optical transition creating an electron-hole pair 
has not been added in. 

(3) This is the case of an undoped semiconductor in a metastable state. The excitation 
energies from this metastable state for V = 0.5, E = 0 and Q = 1 are shown in figure 6. 
The energy corresponding to the optical transition creating an electron-hole pair has stiU 
to be added in. This situation corresponds to N J L  = Nh/L = 0.3948, E / L  = 0.2309. 
A = -1.123 and pLc = -0.000787. Only +(A) is negative and hence there are only exciton 
bound states in the system. For pc the E potential vanishes for k = 0; for p below pc 
the excitation would have a gap. The 9. potentials are positive and constant, 9" = -2np; 
their range has collapsed to one point, p = 0, shown in figure 6 by a cross for the small n 
strings. 

The ground state of the undoped semiconductor corresponds to Ne = Nh = 0, i.e. to 
the absence of particles ( B  = Q = 0); all excitations have a gap. In this case the solution 
of (4.2) does not involve integrals; the unpaired hole excitations and the excitons form 
parabolic bands, while the string excitations are again constrained to the point p = 0. 
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6. Electron-hole droplets 

The string states (class (iii) in section 3) are not occupied in the ground state of model 
(1.1). The system can, however, be prepared in a string state or many string states, which, 
since they are eigenstates of the Hamiltonian, represent a metastable state. String states 
correspond to excitations with usually a relatively small dispersion as a function of the 
rapidity. In thermal equilibrium the string states are populated at a finite temperature; their 
occupation will be significant even at low T if 1p1 is small (note we only consider a negative 
p here). In this section we consider the string states in the limit of a small @, i.e. when the 
system is almost electron-hole symmetric. In this case only the exciton band is occupied 
in the ground or a metastable state and the unpaired holes also correspond to excitations. 

Since the dispersion (as a function of A) of the qn is weak, we may assume that the qn 
functions are constants and the integrals after the summations of (3.5~) and (3%) can be 
carried out straightforwardly. The dispersion of the strings arises from the term involving 
E in (35). Since unpaired holes have to be exponentially activated to overcome a gap, the 
integral is small and we may replace U&) by In this way (35) reduces to a set of 
algebraic equations, namely [6 ] ,  

(%)* = (1 + %-,)(1 + vn+1) qo = exp(-c(k)/T) n = 1, ...,DO (6.1) 

with the asymptotic condition that V. /n  in the limit n + 00 tends to - 2 ~ .  It is easy to 
verify that the solution of this set of equations is 

where f contains the weak dispersion (dependence on the rapidity) and is determined by 
~ ( k ) ;  in particular if exp(-e/T) -+ 0 f also tends to zero, i.e., 

On the other hand, the last term in (3.5~) only produces a small renormalization of the 
chemical potential, which of course vanishes in the limit T + 0. 

From (6.2) we see that 1 + qn grows with n (exponentially if Ipl/T is finite). The 
occupation of that state is given by the Fermi function, i.e., it is proportional to (1 + qn)-'. 
Hence, strings for which nlpI/T is of the order of one or smaller have a finite population. 
At T = 0 their momentum distribution was constrained to p = 0, but as the €-band is 
gradually populated with T, this momentum distribution also broadens to a small but finite 
interval about p = 0. However, since only small p are accessible, the centre of mass of 
these populated string states is delocalized in space. 

In the electron-hole symmetric situation we have N / 2  = M = M + E:, nM; (see 
section 3). While in the ground or metastable state M = N / 2 .  i.e. all electrons and holes are 
paired into exciton bound states, the effect of temperature is to introduce string states at the 
expense of the number of excitons, which is in this way reduced. A string state of length 
(n - 1) corresponds to a boundstate involving n electrons and holes. The wavefunction 
falls off exponentially as a function of any relative coordinate of the particles forming the 
boundstate. The momentum discussed above refers to the motion of the centre of mass of 
the boundstate. At low temperatures we may interpret these bound states as electron-hole 



3734 P Schlottmann 

droplets. At high temperatures all states participate i n  the thermodynamics and distinction 
among excitons, unpaired holes and string states or droplets is no longer significant. 

It is important to point out that droplets will only form under specific conditions. A 
necessw condition is that the chemical potential be close to zero, otherwise the situation 
!p i /  T being small cannot be satisfied at low T .  This corresponds to electron-hole symmetry 
in the semiconductor. The experimentally observed electron-hole droplets are energetically 
favourable by about 1 meV per exciton with respect to free excitons, while in our model the 
droplet has a higher energy than the free excitons. This is not unexpected in one-dimensional 
models, where the restricted phase space prevents a condensation. If the formation of 
droplets would be energetically favourable, one large droplet containing almost all particles 
would condense. 

I. Concluding remarks 

We have considered a simple two-band model of spinless fermions to mimic a semiconductor 
and the concomitant formation of exciton bound states in the presence of an attractive 
interaction between the electrons in the conduction band and holes in the valence band. 
The problem can be mapped onto the Fermi gas with attractive 6-function potential, where 
the spin plays the role of the band index. The exciton bound states then have their analogy 
in the Cooper pairs. The excitons are charge neutral and do not contribute to the electrical 
conductivity, but do transport heat. Depending on the chemical potential and the band 
fillings we may have an insulator or a metal. In the metallic case, fi  # 0, the unpaired 
particle band is partially occupied in the ground or metastable state and is responsible for 
the electrical transport. We considered the unpaired particles to be holes in the valence 
band (acceptors, p-doped semiconductor). Note that because of the translational invariance 
the model has no bound acceptor levels. In the electron-hole symmetric situation (undoped 
semiconductor) the ground or metastable (the exciton band is partially filled) state, the 
system is an insulator. There is no Mott transition to a conducting plasma as a consequence 
of the reduced dimensionality and the lack of repulsion between particles within the same 
band. We adapted the thermodynamic Bethe ansatz equations (derived previously by 
Takahashi [6] and Lai [7]) to our situation and discussed the ground (or metastable) state 
properties and the excitation spectrum in the three representative cases that may occur, 
namely, when either one of the two bands is empty and when the two bands are partially 
filled. 

In the most general situation the system has two Fermi surfaces, associated with the 
band filling of the conduction and valence bands. There is a third class of states, namely the 
string states, which correspond to excited states, i.e. the system has to be specially prepared 
to be in a string state. String states are eigenstates of the Hamiltonian, representing an 
out of equilibrium situation as T + 0. The excitons correspond to a boundstate of one 
electron in the conduction band and one hole of the valence band. The boundstate has 
a radius proportional to 1/V.  Excitons in one dimension follow Fermi statistics and do 
not condense. In the electron-hole symmetric situation all particles are paired into exciton 
bound states at T = 0 and unpaired holes correspond to an excitation. The excitation 
energy for the various classes of states is given by the energy potentials (the energy of 
the optical transition creating an electron-hole pair has to be added). The spectrum of 
elemental excitations is approximately parabolic for the exciton and unpaired hole bands. 
The excitation energy vanishes at the corresponding Fermi surface; the Fermi momentum 
is proportional to the respective band occupation. It is therefore possible to define a Fermi 
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velocity for the low-lying excitations. The range of the string excitations is coupled to the 
Fermi surface of the unpaired holes, i.e. at T = 0 and for electron-hole symmeay it is just 
the point p = 0. The excitations are soliton l i e ,  i.e., the energies and momenta of a finite 
number of excitations are additive. 

The specific heat is proportional to T if Q + B # 0, i.e. when either the unpaired particle 
band or the exciton band is occupied (this corresponds to either a doped semiconductor or 
a metastable state), exponentially activated for Q + B = 0 (ground state of the undoped 
semiconductor) and if the Fermi level is at the van Hove singularity of one of the bands 
a T'IZ contribution arises, which is characteristic of a level crossing of the Prokovsky- 
Talapov type [E]. In the symmetric or nearly symmetric situation the specific heat arises 
predominantly from the exciton pairs (they behave like hard-core bosons, that is they do 
not condense and have no long-range order); the exciton pairs are collective bound states 
which exist at all temperatures (in contrast to exciton states in a generalized BCS theory). 

If both bands are partially filled, correlation functions at T = 0 are expected to fall 
off asymptotically with a power law of the distance between the involved operators. In 
the semiconducting case (no particles, Q + B = 0) correlations decrease exponentially, the 
range being determined by the smallest gap involved. If one band is empty and the other 
one is partially filled, the asymptotic behaviour is in general a product of an exponential 
and a power law; hence the exponential drop-off dominates. There are exceptions to the 
latter case; for instance, the holehole correlation function if Q = 0 or the exciton-exciton 
correlation function if B = 0. In these cases the correlation falls off with a power law of 
the distance. 

In section 6 we studied the possible formation of electron-hole droplets. The conditions 
are particularly favourable in the electron-hole symmetric situation. We associated the 
droplets with the string bound states which only can be populated at finite T. Due to the 
reduced dimensionality the formation of droplets in our model is not energetically favourable 
if compared to excitons. The population of string states is at the expense of excitons, i.e. 
the number of excitons decreases with T. Droplets correspond to an out of equilibrium 
situation in ow model. The association of strings with droplets is only meaningful at low 
T where a few large strings can be populated. It follows from the momentum range of the 
excitations that the centre of mass of a droplet is delocalized. 

It is worth pointing out that this model can be considered as well on a lattice. The 
energy of the valence band would then be bound from below and the model can be mapped 
onto the Huhbard model with attractive U. It is also interesting to notice that the present 
model for a direct gap semiconductor can straightforwardly be extended to an indirect gap 
semiconductor. This generalization does not encounter difficulties, since the number of 
particles in each band is a conserved quantity. 
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